

PRODUCT CERTIFICATE

NAME OF PRODUCT

Insulation solutions for ventilation ducts

Paroc Vect Wired Mat BlackCoat El30 and Paroc Vect Mat BlackCoat El60 and PAROC Vect Wired Mat BlackCoat El60

MANUFACTURER

Paroc Oy Ab P.O. Box 240 FI-00181 Helsinki

PRODUCT DESCRIPTION

Paroc Vect Wired Mat BlackCoat El30, Paroc Vect Mat BlackCoat El60 and PAROC Vect Wired Mat BlackCoat El60 insulation solutions consist of stone wool insulating materials manufactured by Paroc Oy Ab and fastenings and sealants specified in this certificate. In this certificate the installation principles and fire resistance capability of the assembled Paroc Vect Wired Mat BlackCoat El30, Paroc Vect Mat BlackCoat El60 and PAROC Vect Wired Mat BlackCoat El60 insulation solutions for circular ducts are presented. Suitable insulation solution is selected according to the type of the ventilation duct and required fire resistance class.

Paroc Vect Wired Mat BlackCoat El30, Paroc Vect Mat BlackCoat El60 and PAROC Vect Wired Mat BlackCoat El60 insulation materials are CE-marked according to the product standard EN 14303.

CE-marking according to EN 14303 cannot be used to declare fire resistance.

CERTIFICATION PROCEDURE

This certificate has been issued by Eurofins Expert Services Ltd, which is a certification body (S017) accredited by FINAS.

This certificate is based on an initial type testing of the product, an initial inspection of the factory and the factory production control according to the certification criteria RR045 and section 3. The general certification procedures are based on the certification system of Eurofins Expert Services Oy.

The conditions of validity of this certificate are described in section 10.

TABLE OF CONTENTS

REG	GULATIONS, STANDARDS AND INSTRUCTIONS			
1	Regulations and product requirement standards			
2	Other standards and instructions			
PRC	DUCT INFORMATION			
3	Product description, marking and quality control			
4	Delivery and storage on site			
DES	IGN INFORMATION			
5	General			
6	Installation			
7	Fire Safety			
INS	FRUCTIONS FOR INSTALLATION AND USE			
8	Manufacturer's instructions			
VAL	IDITY OF THE CERTIFICATE			
9	Validity period of the certificate			
10	Conditions of validity			
11	Other conditions			
APP	APPENDIX A1: Installation report			
APP	ENDIX A2			

REGULATIONS, STANDARDS AND INSTRUCTIONS

1 Regulations and product requirement standards

In the opinion of Eurofins Expert Services Oy, Paroc Vect Wired Mat BlackCoat El30, Paroc Vect Mat BlackCoat El60 and PAROC Vect Wired Mat BlackCoat El60 , if used in accordance with the provisions of this certificate, will contribute to meet the relevant requirements of the Finnish building legislation as stated in the following:

848/2017 Decree on the fire safety of buildings in accordance of section 7 of this

certificate.

927/2020 Change of the Decree of the Ministry of the Environment on the Fire safety of

Buildings.

2 Other standards and instructions

Other instructions and requirements applicable to the product:

EN 14303 Thermal insulation for building equipment and industrial installations – Factory

made mineral wool (MW) products - Specification.

Eurofins Expert Services Oy certification rules SERT R045, based on tests according to EN 1366-1 and partly applying EXAP EN 15882-1:2011.

Ilmanvaihtolaitosten paloturvallisuus -opas, www.talotekniikkainfo.fi (manual for fire safety of ventilation plants, available in Finnish only).

Paroc Oy Ab Hvac insulations, Installation guide, July 2025.

PRODUCT INFORMATION

3 Product description, marking and quality control

Products used in the Paroc Vect Wired Mat BlackCoat El30-, Paroc Vect Mat BlackCoat El60- and PAROC Vect Wired Mat BlackCoat El60 insulation solutions are presented in Table 1.

Table 1. Used materials in Paroc Vect Wired Mat BlackCoat El30-, Paroc Vect Mat BlackCoat El60and PAROC Vect Wired Mat BlackCoat El60 insulation solutions.

Stone wool mats	PAROC Vect Mat BlackCoat El60
	PAROC Vect Wired Mat BlackCoat El30
	PAROC Vect Wired Mat BlackCoat El60
Sealing products for penetrations	PAROC Fire Seal
Fastenings	As defined in the installation guide and Annex A2

The nominal densities and thicknesses required from the insulating materials in the fire insulation solutions are presented for each fire resistance class in section 7 of this certificate.

Essential characteristics according to standard EN 14303 are declared by the manufacturer in the declarations of performance, available from the manufacturer.

The insulation materials are identified by the markings on the packages, which include product name, dimensions, manufacturer's name, production time and other product information.

The manufacturer performs factory production control of the insulating materials according to the standard EN 14303.

The procedures to ensure the functionality of the fire insulation solutions are the following:

Date of issue 12.9.2025 3 (8)

- The manufacturer ensures that the installation instruction guide and this certificate are made readily available.
- No changes to the fire insulation solutions or products are made before Eurofins Expert Services Oy has evaluated the effect of the changes to the fire resistance given in this certificate.
- Insulating materials used in the fire insulation solutions are clearly and unambiguously marked with product label.
- The manufacturer ensures that the installation companies have been instructed to document the installation using the installation report according to Annex A1.
- The manufacturer ensures that the installation companies have been instructed to deliver a copy of the installation report together with the copy of this certificate for filing in the construction documentation.
- The installed fire insulations are identifiable.

The assessment of conformity of the installed fire insulation system is not covered by this certificate.

4 Delivery and storage on site

The insulating materials are packed into plastic or cardboard packages and delivered to sites in a pallet protected with plastic film.

The insulating materials are delivered and stored according to the manufacturer's instructions to prevent them from getting wet, dirty or damaged.

DESIGN INFORMATION

5 General

The design information given in this certificate is based on the assumption that the structural solutions, fastening methods and other initial data are accordant to this certificate and the given requirements, instructions and standards are followed.

6 Installation

The products are installed according to the manufacturer's installation guide. Figures concerning the installation principles of stone wool mats and pipe sections as well as penetrations of circular ducts are presented in Annex A2. A template of the installation report that the installation company shall prepare is presented in Annex A1.

7 Fire Safety

The requirements for the fire safety of buildings and building products used in them are given in the National Building Code of Finland 848/2017, Decree on the fire safety of buildings and 927/2020 Change of the Decree on the fire safety of buildings.

In the declarations of performance the manufacturer has declared the reaction to fire classes shown in Table 2. The nominal density and the facing material of the product are also shown in Table 2.

Table 2. Reaction to fire class, nominal density and facing of Paroc Vect Wired Mat BlackCoat El30, Paroc Vect Mat BlackCoat El60 and PAROC Vect Wired Mat BlackCoat El60 -insulating materials.

Product	Reaction to fire class	Nominal density	Facing
PAROC Vect Mat BlackCoat El60	A2-s1, d0	60 kg/m ³	Aluminium laminate
PAROC Vect Wired Mat BlackCoat El30	A2-s1, d0	80 kg/m ³	Aluminium laminate and galvanized steel mesh
PAROC Vect Wired Mat BlackCoat El60	A2-s1, d0	90 kg/m ³	Aluminium laminate and galvanized steel mesh

Date of issue 12.9.2025 4 (8)

The fire resistance of insulated circular spiral ducts made of galvanized steel for internal and external fire exposure (o↔i) in horizontal and vertical duct orientations (ve ho) are presented in Table 3. Table 3 presents also the minimum insulation thickness and nominal density of insulating material in different fire resistance classes and the maximum cross section dimensions of the ventilation ducts.

Table 3. The maximum cross section dimensions of ducts and the minimum insulation thickness and density of PAROC Vect Mat BlackCoat El60, PAROC Vect Wired Mat BlackCoat El60 - insulating materials required for circular ducts in different fire resistant classes.

Product	Class	Insulation thickness	Nominal density
Circular duct, maximum diameter 1000 mm			
ADOC Veet Met Bleek Coet 5160	El 30 (ve ho o↔i)	100 mm	60 kg/m ³
PAROC Vect Mat BlackCoat El60	El 60 (ve ho o↔i)	100 mm	60 kg/m ³
PAROC Vect Wired Mat BlackCoat El30	El 30 (ve ho o↔i)	60 mm	80 kg/m ³
PAROC Vect Wired Mat BlackCoat El60	El 30 (ve ho o↔i)	80 mm	90 kg/m ³
PAROC VECI WITEU WAI BIACKCOAL ETOU	El 60 (ve ho o↔i)	80 mm	90 kg/m ³

The minimum steel thickness of the ventilation duct in relation to the cross section dimensions of duct shall be as given in Table 4. In addition, the leakage class shall be as defined in Table 4 and the stiffness of the duct system shall be as of the tested or better.

Table 4. Minimum steel thickness of the ventilation duct to be insulated and minimum duct leakage class.

Duct type	Cross section dimensions of the duct	Steel thickness	Duct leakage class, minimum
Circular	Ø 63 – 315 mm	min. 0,5 mm	D
	Ø 400 – 1000 mm	min. 0,7 mm	

The fire resistance of the fire compartment structure shall be equal to or higher than the fire resistance of the insulated duct. The rigid fire compartment shall have density of at least 575 kg/m³. The minimum thickness of rigid fire compartment wall shall be 70 mm in fire resistance class EI 30, 95 mm in fire resistance class EI 60. The thickness of the rigid fire compartment slab shall be at least 100 mm in fire resistance classes EI 30 and EI 60.

The stresses in suspension devices of horizontal ducts caused by supported load shall not exceed the values presented in Table 5.

Table 5. Maximum values of stresses in suspension devices depending on fire resistance time.

Type of load	Maximum stresses
	Fire resistance time ≤ 60 min
Tensile stress in all vertically orientated components	9 N/mm ²
Shearing stress in screws 1)	15 N/mm ²

¹⁾ Screws of class 4.6 according to standard EN ISO 898-1.

Installation of insulation system is mounted tightly around the circular duct as well as tightly towards the fire compartment according to the manufacturer instructions and drawings presented in Annex 2. The penetrations of the circular ducts are sealed according to the drawings presented in Annex A2.

Date of issue 12.9.2025 5 (8)

INSTRUCTIONS FOR INSTALLATION AND USE

8 Manufacturer's instructions

Installation of the fire insulation solution shall be made according to the manufacturer's instructions (July 2025) PAROC Vect Wired Mat BlackCoat El30 2403-01-61:1...2403-01-61:9 and PAROC Vect Mat BlackCoat El60 2401.01.61-1, 2403-01-61:2, 2401.01.61-3...2401.01.61-9 and PAROC Vect Wired Mat BlackCoat El60 2402.09.61-1...8.

Installation company prepares an installation report according to the Annex A1.

Safety data sheet of the insulating materials is available from the manufacturer.

Date of issue 12.9.2025 6 (8)

VALIDITY OF THE CERTIFICATE

9 Validity period of the certificate

This certificate is valid until April 10, 2030.

The validity of the certificate will be ended, if the product falls into the scope of CE-marking.

The validity of the certificate may be confirmed at Eurofins Expert Services Oy web pages.

10 Conditions of validity

The certificate is valid assuming that no fundamental changes are made to the product, and that the manufacturer has a valid contract on certification.

11 Other conditions

The references made in this certificate to standards and instructions are valid in the format used at the time the certificate was signed.

The recommendations in this certificate concerning the safe use of this product are minimum requirements that shall be satisfied when using the product. The certificate does not override current or future requirements imposed by laws and statutes. In addition to the issues presented in this certificate, design, manufacturing and use shall follow appropriate construction methods.

The manufacturer is in charge of the product's quality and factory production control. In awarding this certificate, Eurofins Expert Services Oy does not bind itself to indemnification liability concerning personal injury or other damage that may directly or indirectly result from using the product described in this certificate.

This certificate EUFI29-25001064-C has been granted as described above to Paroc Oy Ab.

On behalf of Eurofins Expert Services Oy on September 12, 2025

Katja Vahtikari Manager, Construction Certification Heli Välimäki Senior Expert

This document has been signed electronically

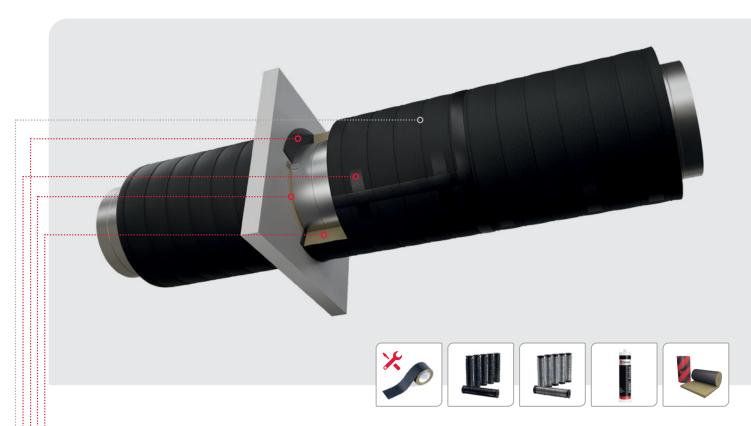
This certificate is the English version of the original certificate no. EUFI29-25001064-C, signed August 12, 2025. In case of dispute the Finnish original certificate is valid.

APPENDIX A1: INSTALLATION REPORT

CERTIFICATE NO. EUFI29-25001064-C

Products installed:	Circular duct	Fire resistance class	Insulation thickness
PAROC Vect Mat BlackCoat El60		EI	
PAROC Vect Wired Mat BlackCoat El30		EI	
PAROC Vect Wired Mat BlackCoat El60		EI	
Insulation of the penetration:		'	
Sealing products:			
Installation site:			
Site identification			
Address			
Installation site specifications (building part, floor, rooms)			
Installation time			
Additional information			
Installation company:			
Name			
Address			
Name of the installer			
Contact information (phone and e-mail)			
Products have been installed according to the mar		instructions \square	
Signature:			
Clarification of signature:			

Date of issue 12.9.2025 8 (8)



SYSTEM DEFINITION

SYSTEM PARTS

	PART NAME	PART DESIGNATION	TECHNICAL SPECIFICATION
•	Duct insulation	PAROC® Vect Mat BlackCoat EI60	EN 14303; PAROC Declaration of Performance
•	Penetration seal gap filler	PAROC® Stonewool	Any unfaced PAROC® Stonewool, minimum density 60 kg/m³, reaction to fire class A2-s1,d0 or better, EN 14303 or EN 13162
•	Fire Sealant	PAROC® FireSeal	PAROC Technical Dataheet*
	Adhesive tape	PAROC® BlackCoat Tape	PAROC Technical Dataheet*
	Wire	Steel wire	Steel wire; minimum thickness 0,7 mm; galvanized, oxidized, stainless steel or coated
	Wire mesh	Steel wire mesh	Steel wire; minimum thickness 0,6 mm; galvanized, oxidized, stainless steel or coated
	Clips	C-clips or netting clips	Steel/netting clips; minimum thickness 0,7 mm; galvanized, oxidized, stainless steel or coated
	Welding pins	Cuphead welding pins CD (capacitor discharge)	Shaft: Ø2,7 mm copper-coated mild steel, insulated with plastic sleeve under the head Shaft tip sharpness: any flattening or radius of the tip cannot exceed 0,5 mm Cuphead: Ø30 mm zinc-coated mild steel, optionally insulated from the shaft side with paper washer

^{*}System components are specified in detail in the PAROC Technical Datasheets.

The system declared performance only applies if the specified components are used, the system is installed in accordance with the PAROC Installation Guide, and all the conditions of the PAROC Design Guide are met regarding specification of the ductwork to be insulated and wall/floor structures that the ductwork is penetrating. Parts, structural elements, and installation operations that are not specified in the PAROC documentation are assumed to follow manufacturers standards and standard practices. Installation operations shall be carried out by installers with an appropriate level of knowledge and experience in the field of insulating steel air ductwork using the technologies: taping, wire and steel mesh binding, capacitor discharge welding.

DESIGN RULES

THE FIRE PROTECTION SYSTEM CAN BE APPLIED TO CIRCULAR DUCTS THAT COMPLY WITH THE FOLLOWING PARAMETERS

- Tightness class D or higher according to EN 12237 and maximum 500 Pa overpressure and underpressure.
- Duct sections are made tight with EPDM gasket used between duct sections and connector coupling. The connector coupling is fixed
 into the duct section with self-drilling screws with 150 mm spacing, minimum screw size 4,2 mm, or by pressure-tight steel rivets with
 a minimum size of 3.2 mm.
- Duct diameter should be a maximum size of 1000 mm.
- Horizontal ducts are suspended using clamps and pairs of steel threaded rod hangers, the two rods of each pair placed on the
 opposite sides of the duct. The tension in the hangers in cold conditions must not exceed 9 N/mm². The threaded rods are attached
 to the ceiling by anchoring elements with the proven loadbearing capacity to carry the insulated ductwork for the same or higher fire
 resistance time than the duct system in standard fire conditions (ISO 834 / EN 1363-1 standard fire curve).
- · Horizontal installation: Distance between hangers should be a maximum of 1800 mm.
- · Length of duct sections should be a maximum of 6000 mm.
- · Position of hangers and insulation joints relative to duct joints: any.
- Vertical installation: Distance between floor levels / duct supports can be a maximum of 8x duct diameter, maximum 5 m.

THE DUCTS MAY PENETRATE

- Walls flexible wall construction of plasterboards faced steel stud partition containing mineral wool insulation in the void, fire rated at a
 minimum of the same as or higher than the duct system, minimum wall thickness 100 mm. Reinforcing steel studs shall be applied in
 horizontal and vertical direction at all the edges of the aperture.
- Other types of walls light aerated concrete, concrete, masonry, all with a minimum fire resistance rating the same as or higher than that of the duct system, minimum wall thickness 100 mm.
- Floors and decks light aerated concrete with a minimum fire resistance rating the same as or higher than that of the duct system, minimum floor/deck thickness 100 mm.
- Other types of floors/decks concrete, masonry, all with a minimum fire resistance rating the same as or higher than that of the duct system, minimum floor/deck thickness 100 mm.

PENETRATION SEAL THROUGH WALLS/FLOORS

- Maximum gap between the duct and the wall/floor is 30 mm.
- Duct is attached to the wall/floor using four steel L-angles, minimum size 50 x 50 x 35 x 2 mm and maximum size 105 x 100 x 90 x 2 mm (oriented so that the L-angle will not extend further than the insulation thickness). In the wall, two on each side of the wall; on the floor, four placed on the top; otherwise the sealing system is identical for all types of walls/floors.
- In the wall, two L-angles are positioned on each side of the wall with angular spacing of 180°. The pairs of the L-angles are shifted by 90° on the opposite sides of the wall.
- On the floor, four L-angles are placed on the top with angular spacing of 90°.
- Each steel L-angle is screwed to the duct by two self-drilling screws with minimum size 4,2 mm, placed diagonally across the L-angle.
- · Design of the penetration seal system is otherwise identical for all types of walls/floors.
- Gap filler: any unfaced PAROC® Stonewool, minimum uncompressed density 60 kg/m³, reaction to fire class A2-s1,d0 or better, tightly stuffed in the cavity to fill it completely and flush with wall/floor surfaces.
- · Stone wool filler is covered by a thin layer of fire sealant 3-5 mm thick. The fire sealant may extend to adjacent surfaces of the wall/floor.
- The edge surface of stone wool insulation facing the wall/floor/ceiling is glued with PAROC® FireSeal to the penetration and wall/floor/ceiling.

INSULATING LAYER ON THE DUCT SURFACES

- Insulation product PAROC® Vect Mat BlackCoat El60, nominal thickness 100 mm.
- · Joints are positioned at the bottom of the horizontal duct, offset of joints by a minimum of 100 mm.
- Mat joints are optionally taped (also any pinching of insulation or penetrations) to provide for diffusion-resistant surface with the self-adhesive PAROC® BlackCoat Tape, maximum width 110 mm.
- Rounds of wire with a minimum 0,7 mm thickness are evenly wrapped around insulation, spaced a maximum of 150 mm apart, at least 2x per piece of insulation mat, starting 50-100 mm from the wall/floor/ceiling surface.

ALTERNATIVE TO WIRE LOOPS: WIRE MESH

As an alternative to wire loops, a wire mesh (wire thickness a minimum of 0,6 mm) can be applied instead. Four optional methods of connecting the wire mesh joints:

- 1. Wire mesh is twisted approximately each 150 mm.
- 2. Wire mesh is sewn by wire with a minimum thickness of 0,7 mm.
- 3. Wire mesh is connected with clips, approximately each 150 mm.
- 4. Wire mesh is stitched by small steel wire loops with a minimum thickness of 0,7 mm, approximately each 150 mm.

Longitudinal joints of wire mesh must be connected using any of the methods above. Connecting transversal joints is optional. If transversal joints are twisted (method 1), the mesh wires can be twisted; never twist the perimeter wire.

Material of the wire mesh and wires: steel with any surface finishing or stainless steel.

As an additional measure, to further secure the installation, the insulation may be attached to the duct by welding pins. Pins must be placed a minimum of 50 mm from joints of the mats.

INSTALLATION PROCEDURE

INSTALLATION OF PENETRATION

Before starting the installation, the openings in the wall/floor must be checked if they are clean and following the design rules given in this document. Working temperature is a minimum of +10 °C.

- 1. Fill the gap tightly and completely with unfaced PAROC® Stonewool, minimum uncompressed density 60 kg/m³, reaction to fire class A2-s1,d0 or better. The resulting surface of stone wool filling must be flush with both surfaces of the wall/floor.
- 2. Prime the surface of the stone wool filling and surrounding wall/floor surfaces with clean water.
- 3. Apply a continuous layer of fire sealant on both sides of the stone wool filler compressed in the gap, thickness 3 to 5 mm; this may extend to adjacent surfaces of wall/floor.
- **4.** Make the fire sealant surface even and smooth with a wet brush or spatula.
- 5. Stabilise the duct by attaching steel L-angles (if not installed already).

Screws for fixing the L-angles to the wall/floor must be made of steel and be of an appropriate type for the wall/floor material. Two screws must be used to attach each L-angle to the wall/floor. Minimum size is 5 mm for aerated concrete, and 3,5 mm for lightweight partitions screwed to the steel structure of the drywalls. They may include dowels or other type of anchors suitable for fire resistance of the duct.

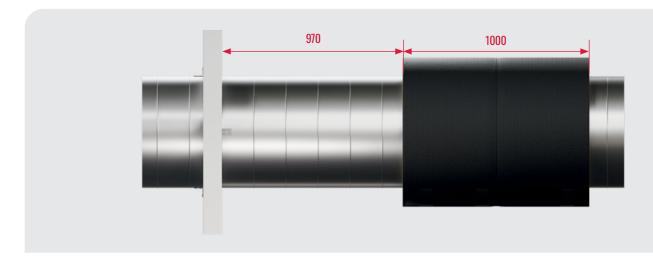
BASIC RULES FOR HANDLING THE INSULATION MATS

- Mats must be handled with care to avoid damage to the insulation or facing.
- Unpack and unfold the mat on a flat surface, remove the plastic foil and shake the mat gently and let it rest for a minimum of 10 minutes, until it regains its original thickness and releases any tension due to packing compression.
- The insulation layer must have a uniform thickness; therefore, avoid too much stress or pinching fingers during product handling and installation.

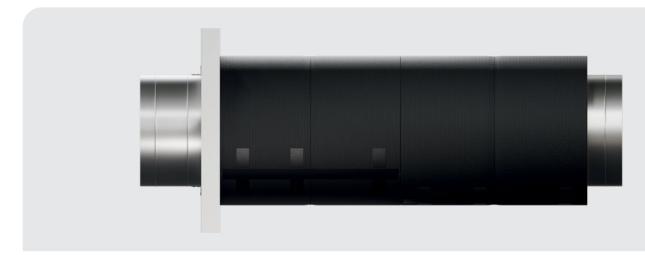
The insulation material compensates surface irregularities of the duct through its material properties. Therefore cuts for L-angles or flanges are not required. Bends and T-joints can be insulated by cutting segments of the insulation material.

INSTALLATION OF MATS ON THE DUCT

Before installing the insulating layer, the ductwork must be checked if:


- · It fulfils air tightness criteria.
- · It is assembled according to design, with proper quality, without visible holes or gaps or mechanical damage.
- · Duct joints are tight and properly fit together.
- All the sizes and components comply with this guide.
- Penetration seal is installed in compliance with this guide.

Mat length is calculated as: 3,14 x (steel duct diameter + 2x insulation thickness + addition for mat compression). The addition for mat compression is approxmately 20 mm or a minimum 2% of the mat length. If the mat is too short to wrap the duct in a single piece, the correct final length can be made by connecting several pieces of the mat by tape. Minimum size of any single piece of mat in any direction is 200 mm.



INSTALLATION OF MATS ON HORIZONTAL DUCT

- 1. Cut the mat to the correct length corresponding to the circumference of the duct, leaving a minimum of 100 mm extra facing for overlapping.
- 2. Wrap the insulation around the duct tightly, so that no gaps occur at the insulation joints.
- **3.** First install the second mat, leaving the space on the duct between the second mat layer and wall -30 mm or a minimum 2% of actual size of the gap, to allow the first mat to be adequately compressed against the wall. Stabilize the mat on the duct by a single loop of wire in mid-length and secure the overlap on the joint by applying pieces of tape across the joint.

4. Install and stabilize the first mat adjacent to the wall. Unless the fire sealant is still wet, the wall surface must be primed with clean water and another layer of fire sealant applied to create a gluing layer for the insulation. Spread the fire sealant with a wet brush or spatula to make a soft layer approximately 1 mm thick. Immediately after, while the fire sealant is still wet, glue the insulation to the wall.


5. Place the following mats on the duct after one another compressing all the mats to the final installed width of 20 mm or a minimum of 2% less than the original mat width. To allow for the proper compression of mats, it is recommended to install every second mat and then fill the gaps with mats inbetween.

- **6.** Place all the mats on the duct with longitudinal joint facing downward. Longitudinal joints of adjacent mats are to be offset by a minimum of 100 mm. The last mat must be glued to the wall with the fire sealant following the principles of 4.
- 7. In places where suspension rods penetrate the insulation, make a cut in the insulation, up to where suspension rod will be placed; new joint will be created this way.

8. To reduce the risk of condensation (optional): carefully tape all joints with PAROC® BlackCoat Tape; pay attention to centrally positioning the tape in all directions.

9. Install the wire loops around the insulated duct to secure its position, twisting the ends of each wire together. The spacing of the loops is a maximum of 150 mm; 50-100 mm from the wall.

10. If there are any visible gaps between mats and walls, apply an appropriate amount of fire sealant therein so that the insulation edge is glued to the wall on all its edge area. Excess fire sealant needs to be removed.

INSTALLATION OF MATS ON VERTICAL DUCT

- 1. Cut the mat to the correct length corresponding to the circumference of the duct, leaving a minimum of 100 mm extra facing for overlapping.
- 2. Wrap the insulation around the duct tightly, so that no gaps occur at the joints.
- 3. Install the first mat adjacent to the floor/ceiling. Unless the fire sealant is still wet, the floor/ceiling surface must be primed with clean water and another layer of fire sealant applied to create a gluing layer for the insulation. Spread the fire sealant with a wet brush or spatula to make a soft layer approximately 1 mm thick. Immediately after, while the fire sealant is still wet, glue the insulation to the floor/ceiling.
- **4.** Stabilize the mat on the duct by a single loop of wire in mid-length and secure the overlap on the joint by applying pieces of tape across the joint.
- **5.** Place the remaining mats on the duct after one another compressing all the mats to the final installed width 20 mm or a minimum of 2% less than the original mat width. Joints are to be offset by a minimum of 100 mm. Last top/bottom mat must be glued to the ceiling/floor with the fire sealant following the principles of 3.

- **6.** To reduce the risk of condensation (optional): carefully tape all joints with PAROC® BlackCoat Tape; pay attention to centrally positioning the tape in all directions.
- 7. Install wire loops around the insulated duct to secure its position, twisting the ends of each wire together. The spacing of the loops is a maximum of 150 mm; 50-100 mm from the floor/ceiling.
- **8.** If there are any visible gaps between the mats and floor/ceiling, apply an appropriate amount of fire sealant therein so that the insulation edge is glued to the floor/ceiling on all its edge area. Excess fire sealant needs to be removed.

SECURING THE INSULATION LAYER ON THE DUCTWORK WITH WIRE MESH

Instead of wire loops, insulation can be fixed to the duct by a wire mesh (wire thickness a minimum of 0,6 mm) applied on the top of insulation, after all the mats are secured in place by auxiliary wire loops or tape.

Four optional methods of connecting the wire mesh joints:

- 1. Twist the wires in longitudinal joints approximately each 150 mm. Connecting transversal joints is optional. If transversal joints are twisted (method 1), the mesh wires can be twisted; never twist the perimeter wire.
- 2. Sew the longitudinal (optionally also transversal) joints by wire with a minimum thickness of 0,7 mm.
- 3. Connect the longitudinal (optionally also transversal) joints with clips, approximately each 150 mm.
- **4.** Stitch the longitudinal (optionally also transversal) joints by small steel wire loops with a minimum thickness of 0,7 mm, approximately each 150 mm.

GUIDANCE ON CUP HEAD PIN WELDING

To deliver the required fire performance of insulated duct systems, the quality of components and capacitor discharge welding process are crucial. The following parameters are critical to deliver the required weld quality. Good weld quality must be tested prior to attaching insulation on the duct.

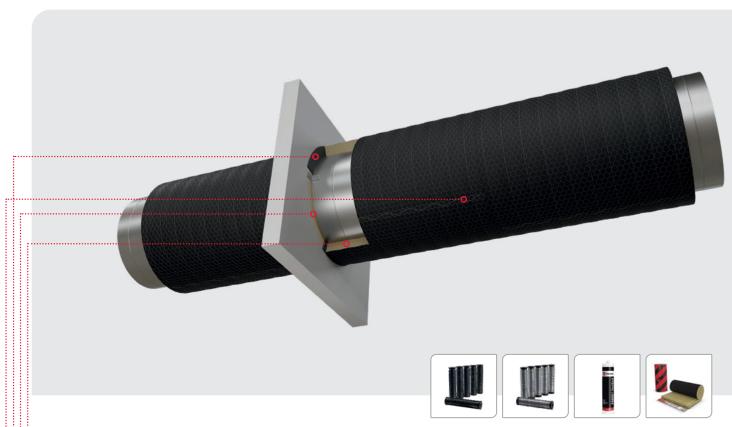

Test of the weld quality

- · Weld a minimum of five pins to the same material, steel thickness, and surface as the insulated duct.
- Visually inspect the weld. The pin tip should be properly melted with the steel sheet, without any visible reduction of pin diameter at the weld or radial burn patterns from the weld.
- Bend the pin using a pair of pliers until the pin breaks. The pin must not detach from the steel sheet at the weld, but from slightly above. The weld must be stronger than the pin shaft.
- Repeat the test whenever the weld parameters change (pin type, steel thickness) or whenever there is a doubt about the weld quality based on sensory perceptions during welding.

NOTE: As certain conditions to achieve good weld are affected by the insulation product (points 4 and 5 below), it is recommended to perform this test with the insulation product and remove it before testing the weld quality by bending of pins.

Conditions to achieve good weld quality

- 1. Sharp tip of the pin; any flattening or radius of the tip cannot exceed 0,5 mm.
- 2. Optimal setting of the welding machine
 - Voltage
 - Spring tension in the hand tool
- **3.** Avoiding excess manual force on the pin during welding. There must be only light touch of the pin to the steel duct surface, and when the hand tool is triggered, the pin must only be pushed against the steel duct surface by the spring force in the hand tool.
- 4. Sufficient pin length so that there is minimum 3 mm clearance between the insulation surface and the pin head before welding.
- **5.** Avoiding any stray currents and additional electrical resistance for the current flowing between the pin and the steel duct surface during the welding.
 - Place the negative electrode on the same duct segment where welding is performed.
 - Keep both electrodes clean and make sure there is good contact between the pin and the hand tool and between the negative electrode clip and the duct surface.



SYSTEM DEFINITION

SYSTEM PARTS

	PART NAME	PART DESIGNATION	TECHNICAL SPECIFICATION
•	Duct insulation	PAROC® Vect Wired Mat BlackCoat El30	EN 14303; PAROC Declaration of Performance
•	Penetration seal gap filler	PAROC® Stonewool	Any unfaced PAROC® Stonewool, minimum density 60 kg/m³, reaction to fire class A2-s1,d0 or better, EN 14303 or EN 13162
	Fire Sealant	PAROC® FireSeal	PAROC Technical Datasheet*
	Wire	Steel wire	Steel wire; minimum thickness 0,7 mm; galvanized, oxidized, stainless steel or coated
	Clips	C-clips or netting clips	Steel/netting clips; minimum thickness 0,7 mm; galvanized, oxidized, stainless steel or coated
	Welding pins	Cuphead welding pins CD (capacitor discharge)	Shaft: Ø2,7 mm copper-coated mild steel, insulated with plastic sleeve under the head Shaft tip sharpness: any flattening or radius of the tip cannot exceed 0,5 mm Cuphead: Ø30 mm zinc-coated mild steel, insulated from the shaft side with paper washer

^{*}System components are specified in detail in the PAROC Technical Datasheets.

The system declared performance only applies if the specified components are used, the system is installed in accordance with the PAROC Installation Guide, and all the conditions of the PAROC Design Guide are met regarding specification of the ductwork to be insulated and wall/floor structures that the ductwork is penetrating. Parts, structural elements, and installation operations that are not specified in the PAROC documentation are assumed to follow manufacturers standards and standard practices. Installation operations shall be carried out by installers with an appropriate level of knowledge and experience in the field of insulating steel air ductwork using the technologies: taping, wire and steel mesh binding, capacitor discharge welding.

DESIGN RULES

This fire protection duct system is designed for circular ducts, horizontal and vertical, standard sizes to EN 1366-1, tested at standard conditions for fire inside the duct (3 m/s air flow rate) and -500 Pa for fire outside the duct.

THE FIRE PROTECTION SYSTEM CAN BE APPLIED TO CIRCULAR DUCTS THAT COMPLY WITH THE FOLLOWING PARAMETERS

- Tightness class D or higher according to EN 12237 and maximum 500 Pa overpressure and underpressure.
- Duct sections are made tight with EPDM gasket used between duct sections and connector coupling. The connector coupling is fixed into the duct section with self-drilling screws with 150 mm spacing, minimum screw size 4,2 mm, or by pressure-tight steel rivets with a minimum size of 3,2 mm.
- Duct diameter should be a maximum size of 1000 mm.
- Horizontal ducts are suspended using clamps and pairs of steel threaded rod hangers, the two rods of each pair placed on the
 opposite sides of the duct. The tension in the hangers in cold conditions must not exceed 9 N/mm². The threaded rods are attached
 to the ceiling by anchoring elements with the proven loadbearing capacity to carry the insulated ductwork for the same or higher fire
 resistance time than the duct system in standard fire conditions (ISO 834 / EN 1363-1 standard fire curve).
- · Horizontal installation: Distance between hangers should be a maximum of 1800 mm.
- Length of duct sections should be a maximum of 6000 mm.
- · Position of hangers and insulation joints relative to duct joints: any.
- · Vertical installation: Distance between floor levels / duct supports can be a maximum of 8x duct diameter, maximum 5 m.

TH

THE DUCTS MAY PENETRATE

- Walls flexible wall construction of plasterboards faced steel stud partition containing mineral wool insulation in the void, fire rated at a minimum of the same as or higher than the duct system, minimum wall thickness 70 mm. Reinforcing steel studs shall be applied in horizontal and vertical direction at all the edges of the aperture.
- Other types of walls light aerated concrete, concrete, masonry, all with a minimum fire resistance rating the same as or higher than that of the duct system, minimum wall thickness 70 mm.
- Floors and decks light aerated concrete with a minimum fire resistance rating the same as or higher than that of the duct system, minimum floor/deck thickness 100 mm.
- Other types of floors/decks concrete, masonry, all with a minimum fire resistance rating the same as or higher than that of the duct system, minimum floor/deck thickness 100 mm.

PENETRATION SEAL THROUGH WALLS/FLOORS

- Maximum gap between the duct and the wall/floor is 30 mm.
- Duct is attached to the wall/floor using four steel L-angles, minimum size 50 x 50 x 35 x 2 mm and maximum size 105 x 60 x 90 x 2 mm (oriented so that the L-angle will not extend further than the insulation thickness).
- In the wall, two L-angles are positioned on each side of the wall with angular spacing of 180°. The pairs of the L-angles are shifted by 90° on the opposite sides of the wall.
- On the floor, four L-angles are placed on the top with angular spacing of 90°.
- Each steel L-angle is screwed to the duct by two self-drilling screws with minimum size 4,2 mm, placed diagonally across the L-angle.
- Design of the penetration seal system is otherwise identical for all types of walls/floors.
- Gap filler: any unfaced PAROC® Stonewool, minimum uncompressed density 60 kg/m³, reaction to fire class A2-s1,d0 or better, tightly stuffed in the cavity to fill it completely and flush with wall/floor surfaces.
- · Stone wool filler is covered by a layer of fire sealant 3-5 mm thick. The fire sealant may extend to adjacent surfaces of wall/floor.
- The edge surface of stone wool insulation facing the wall/floor/ceiling is glued with PAROC® FireSeal to the penetration and wall/floor/ceiling.

INSULATING LAYER ON THE DUCT SURFACES

- Insulation product PAROC® Vect Wired Mat BlackCoat El30, nominal thickness 60 mm.
- Offset of longitudinal joints by a minimum of 100 mm.
- Fixing insulation to the duct four optional methods of connecting the wire mesh joints:
 - 1. Wire mesh is twisted approximately each 150 mm.
 - 2. Wire mesh is sewn by wire with a minimum thickness of 0,7 mm.
 - 3. Wire mesh is connected with clips, approximately each 150 mm.
 - 4. Wire mesh is stitched by small steel wire loops with a minimum thickness of 0,7 mm, approximately each 150 mm.

Longitudinal joints of wire mesh must be connected using any of the methods above. Connecting transversal joints is optional. If transversal joints are twisted (method 1), the mesh wires can be twisted; never twist the perimeter wire.

Material of the wire mesh and wires: steel with any surface finishing or stainless steel.

As an additional measure, to further secure the installation, the insulation may be attached to the duct by welding pins. Pins must be placed a minimum of 50 mm from joints of the mats.

INSTALLATION PROCEDURE

INSTALLATION OF PENETRATION

Before starting the installation, the openings in the wall/floor must be checked if they are clean and following the design rules given in this document. Working temperature is a minimum of +10 °C.

- **1.** Fill the gap tightly and completely with unfaced PAROC® Stonewool, minimum uncompressed density 60 kg/m³, reaction to fire class A2-s1,d0 or better. The resulting surface of stone wool filling must be flush with both surfaces of the wall/floor.
- 2. Prime the surface of the stone wool filling and surrounding wall/floor surfaces with clean water.
- **3.** Apply a continuous layer of fire sealant on both sides of the stone wool filler compressed in the gap, thickness 3 to 5 mm; this may extend to adjacent surfaces of wall/floor.
- **4.** Make the fire sealant surface even and smooth with a wet brush or spatula.
- 5. Stabilise the duct by attaching steel L-angles (if not installed already).

Screws for fixing the L-angles to the wall/floor must be made of steel and be of an appropriate type for the wall/floor material. Two screws must be used to attach each L-angle to the wall/floor. Minimum size is 5 mm for aerated concrete, and 3,5 mm for lightweight partitions – screwed to the steel structure of the drywalls. They may include dowels or other type of anchors suitable for fire resistance of the duct.

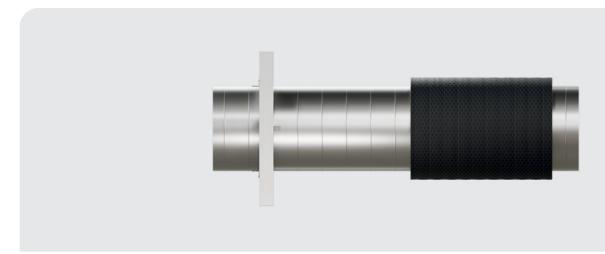
BASIC RULES FOR HANDLING THE INSULATION MATS

- Mats must be handled with care to avoid damage to the insulation or facing.
- Unpack and unfold the mat on a flat surface, remove the plastic foil and shake the mat gently and let it rest for a minimum of 10 minutes, until it regains its original thickness and releases any tension due to packing compression.
- The insulation layer must have a uniform thickness; therefore, avoid too much stress or pinching fingers during product handling and installation.

The insulation material compensates surface irregularities of the duct through its material properties. Therefore cuts for L-angles or flanges are not required. Bends and T-joints can be insulated by cutting segments of the insulation material.

INSTALLATION OF MATS ON THE DUCT

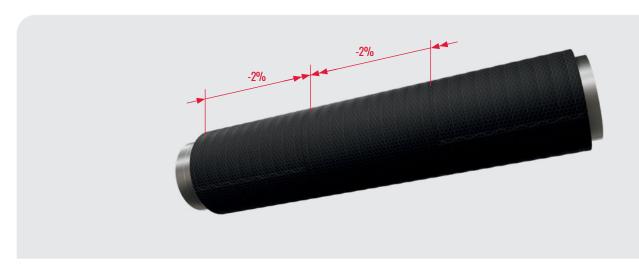
Before installing the insulating layer, the ductwork must be checked if:


- · It fulfils air tightness criteria.
- It is assembled according to design, with proper quality, without visible holes or gaps or mechanical damage.
- · Duct joints are tight and properly fit together.
- · All the sizes and components comply with this guide.
- · Penetration seal is installed in compliance with this guide.

Mat length is calculated as: 3,14 x (steel duct diameter + 2x insulation thickness + addition for mat compression). Addition for mat compression is approximately 20 mm or a minimum 2% of the mat length. If the mat is too short to wrap the duct in a single piece, the correct final length can be made by connecting several pieces of the mat by tape. Minimum size of any single piece of mat in any direction is 200 mm.

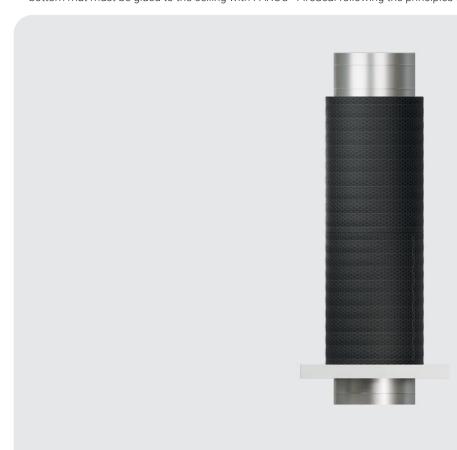
INSTALLATION OF MATS ON HORIZONTAL DUCT

- 1. Cut the mat to the correct length corresponding to the circumference of the duct, leaving a minimum of 100 mm extra facing and mesh for overlapping.
- 2. Wrap the insulation around the duct tightly, so that no gaps occur at the insulation joints.
- 3. First install the second mat, leaving the space on the duct between the second mat layer and wall -30 mm or a minimum 2% of actual size of the gap, to allow the first mat to be adequately compressed against the wall.



4. Install and stabilize the first mat adjacent to the wall. Unless the fire sealant is still wet, the wall surface must be primed with clean water and another layer of fire sealant applied to create a gluing layer for the insulation. Spread the fire sealant with a wet brush or spatula to make a soft layer approximately 1 mm thick. Immediately after, while the fire sealant is still wet, glue the insulation to the wall.

5. Place the following mats on the duct after one another compressing all the mats to the final installed width 20 mm or a minimum of 2% less than the original mat width.



- **6.** Place the remaining mats on the duct. Longitudinal joints of the adjacent mats are to be offset by a minimum of 100 mm. The last mat must be glued to the wall with the fire sealant following the principles of 4.
- 7. In places where suspension rods penetrate the insulation, make a cut in the insulation, up to where suspension rod will be placed; new joint will be created this way.
- **8.** If there are any visible gaps between mats and walls, apply an appropriate amount of fire sealant therein so that the insulation edge is glued to the wall on all its edge area. Excess fire sealant needs to be removed.

INSTALLATION OF MATS ON VERTICAL DUCT

- 1. Cut the mat to the correct length corresponding to the circumference of the duct, leaving a minimum of 100 mm extra facing and mesh for overlapping.
- 2. Wrap the insulation around the duct tightly, so that no gaps occur at the joints.
- 3. Install the first mat adjacent to the floor/ceiling. Unless the fire sealant is still wet, the floor/ceiling surface must be primed with clean water and another layer of fire sealant applied to create a gluing layer for the insulation. Spread the fire sealant with a wet brush or spatula to make a soft layer approximately 1 mm thick. Immediately after, while the fire sealant is still wet, glue the insulation to the floor/ceiling.
- **4.** Place the remaining mats on the duct after one another compressing all the mats to the final installed width 20 mm or a minimum of 2% less than the original mat width. Longitudinal joints of adjacent mats are to be offset by a minimum of 100 mm. The last top/bottom mat must be glued to the ceiling with PAROC® FireSeal following the principles of 3.

5. If there are any visible gaps between the mats and floor/ceiling, apply an appropriate amount of fire sealant therein so that the insulation edge is glued to the floor/ceiling on all its edge area. Excess fire sealant needs to be removed.

SECURING THE INSULATION LAYER ON THE DUCTWORK

Fixing insulation to the duct – four optional methods of connecting the wire mesh joints:

- 1. Twist the wires in longitudinal joints approximately each 150 mm. Connecting transversal joints is optional. If transversal joints are twisted (method 1), the mesh wires can be twisted; never twist the perimeter wire.
- 2. Sew the longitudinal (optionally also transversal) joints by wire with a minimum thickness of 0,7 mm.
- 3. Connect the longitudinal (optionally also transversal) joints with clips, approximately each 150 mm.
- **4.** Stitch the longitudinal (optionally also transversal) joints by small steel wire loops with a minimum thickness of 0,7 mm, approximately each 150 mm.

GUIDANCE ON CUP HEAD PIN WELDING

To deliver the required fire performance of insulated duct systems, the quality of components and capacitor discharge welding process are crucial. The following parameters are critical to deliver the required weld quality. Good weld quality must be tested prior to attaching insulation on the duct.

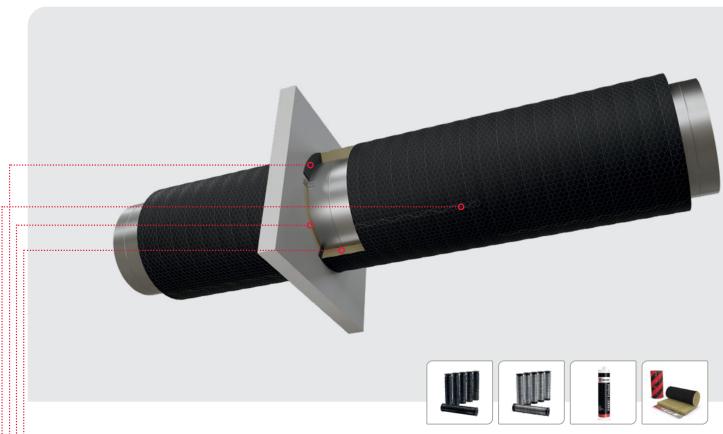
Test of the weld quality

- · Weld a minimum of five pins to the same material, steel thickness, and surface as the insulated duct.
- Visually inspect the weld. The pin tip should be properly melted with the steel sheet, without any visible reduction of pin diameter at the weld or radial burn patterns from the weld.
- Bend the pin using a pair of pliers until the pin breaks. The pin must not detach from the steel sheet at the weld, but from slightly above. The weld must be stronger than the pin shaft.
- Repeat the test whenever the weld parameters change (pin type, steel thickness) or whenever there is a doubt about the weld quality based on sensory perceptions during welding.

NOTE: As certain conditions to achieve good weld are affected by the insulation product (points 4 and 5 below), it is recommended to perform this test with the insulation product and remove it before testing the weld quality by bending of pins.

Conditions to achieve good weld quality

- 1. Sharp tip of the pin; any flattening or radius of the tip cannot exceed 0,5 mm.
- 2. Optimal setting of the welding machine
 - Voltage
 - · Spring tension in the hand tool
- **3.** Avoiding excess manual force on the pin during welding. There must be only light touch of the pin to the steel duct surface, and when the hand tool is triggered, the pin must only be pushed against the steel duct surface by the spring force in the hand tool.
- 4. Sufficient pin length so that there is minimum 3 mm clearance between the insulation surface and the pin head before welding.
- **5.** Avoiding any stray currents and additional electrical resistance for the current flowing between the pin and the steel duct surface during the welding.
 - Place the negative electrode on the same duct segment where welding is performed.
 - Keep both electrodes clean and make sure there is good contact between the pin and the hand tool and between the negative electrode clip and the duct surface.



SYSTEM DEFINITION

SYSTEM PARTS

11			
	PART NAME	PART DESIGNATION	TECHNICAL SPECIFICATION
•	Duct insulation	PAROC® Vect Wired Mat BlackCoat El60	EN 14303; PAROC Declaration of Performance
•	Penetration seal gap filler	PAROC® Stonewool	Any unfaced PAROC® Stonewool, minimum density 60 kg/m³, reaction to fire class A2-s1,d0 or better, EN 14303 or EN 13162
	Fire Sealant	PAROC® FireSeal	PAROC Technical Datasheet*
	Wire	Steel wire	Steel wire; minimum thickness 0,7 mm; galvanized, oxidized, stainless steel or coated
	Clips	C-clips or netting clips	$Steel/netting\ clips; minimum\ thickness\ 0.7\ mm; galvanized, oxidized, stainless\ steel\ or\ coated$
	Welding pins	Cuphead welding pins CD (capacitor discharge)	Shaft: Ø2,7 mm copper-coated mild steel, insulated with plastic sleeve under the head Shaft tip sharpness: any flattening or radius of the tip cannot exceed 0,5 mm Cuphead: Ø30 mm zinc-coated mild steel, insulated from the shaft side with paper washer

 $[\]hbox{*System components are specified in detail in the PAROC Technical Datasheets}.$

The system declared performance only applies if the specified components are used, the system is installed in accordance with the PAROC Installation Guide, and all the conditions of the PAROC Design Guide are met regarding specification of the ductwork to be insulated and wall/floor structures that the ductwork is penetrating. Parts, structural elements, and installation operations that are not specified in the PAROC documentation are assumed to follow manufacturers standards and standard practices. Installation operations shall be carried out by installers with an appropriate level of knowledge and experience in the field of insulating steel air ductwork using the technologies: taping, wire and steel mesh binding, capacitor discharge welding.

DESIGN RULES

This fire protection duct system is designed for circular ducts, horizontal and vertical, standard sizes to EN 1366-1, tested at standard conditions for fire inside the duct (3 m/s air flow rate) and -500 Pa for fire outside the duct.

THE FIRE PROTECTION SYSTEM CAN BE APPLIED TO CIRCULAR DUCTS THAT COMPLY WITH THE FOLLOWING PARAMETERS

- Tightness class D or higher according to EN 12237 and maximum 500 Pa overpressure and underpressure.
- Duct sections are made tight with EPDM gasket used between duct sections and connector coupling. The connector coupling is fixed into the duct section with self-drilling screws with 150 mm spacing, minimum 4,2 mm screw size, or by pressure-tight steel rivets with a minimum size of 3,2 x mm.
- Duct diameter should be a maximum size of 1000 mm.
- Horizontal ducts are suspended using clamps and pairs of steel threaded rod hangers, the two rods of each pair placed on the opposite sides of the duct. The tension in the hangers in cold conditions must not exceed 9 N/mm². The threaded rods are attached to the ceiling by anchoring elements with the proven loadbearing capacity to carry the insulated ductwork for the same or higher fire resistance time than the duct system in standard fire conditions (ISO 834 / EN 1363-1 standard fire curve).
- Horizontal installation: Distance between hangers should be a maximum of 1800 mm.
- Length of duct sections should be a maximum of 6000 mm.
- Position of hangers and insulation joints relative to duct joints: any.
- · Vertical installation: Distance between floor levels / duct supports can be a maximum of 8x duct diameter, maximum 5 m.

THE DUCTS MAY PENETRATE

- Walls flexible wall construction of plasterboards faced steel stud partition containing mineral wool insulation in the void, fire rated at a minimum of the same as or higher than the duct system, minimum wall thickness 100 mm. Reinforcing steel studs shall be applied in horizontal and vertical direction at all the edges of the aperture.
- · Other types of walls light aerated concrete, concrete, masonry, all with a minimum fire resistance rating the same as or higher than that of the duct system, minimum wall thickness 100 mm.
- · Floors and decks light aerated concrete with a minimum fire resistance rating the same as or higher than that of the duct system, minimum floor/deck thickness 100 mm.
- · Other types of floors/decks concrete, masonry, all with a minimum fire resistance rating the same as or higher than that of the duct system, minimum floor/deck thickness 100 mm.

PENETRATION SEAL THROUGH WALLS/FLOORS

- Maximum gap between the duct and the wall/floor is 30 mm.
- Duct is attached to the wall/floor using four steel L-angles, minimum size 50 x 50 x 35 x 2 mm and maximum size 105 x 80 x 90 x 2 mm (oriented so that the bracket will not extend further than the insulation thickness).
- In the wall, two L-angles are positioned on each side of the wall with angular spacing of 180°. The pairs of the L-angles are shifted by 90° on the opposite sides of the wall.
- On the floor, four L-angles are placed on the top with angular spacing of 90°.
- Each steel L-angle is screwed to the duct by two self-drilling screws with minimum size 4,2 mm, placed diagonally across the L-angle.
- Design of the penetration seal system is otherwise identical for all types of walls/floors.
- Gap filler: any unfaced PAROC® Stonewool, minimum uncompressed density 60 kg/m³, reaction to fire class A2-s1,d0 or better, tightly stuffed in the cavity to fill it completely and flush with wall/floor surfaces.
- Stone wool filler is covered by a layer of fire sealant 3-5 mm thick. The fire sealant layer may extend to adjacent surfaces of wall/floor.
- The edge surface of stone wool insulation facing the wall/floor/ceiling is glued with PAROC® FireSeal to the penetration and wall/floor/ ceiling.

INSULATING LAYER ON THE DUCT SURFACES

- Insulation product PAROC® Vect Wired Mat BlackCoat El60, nominal thickness 80 mm.
- Offset of longitudinal joints by a minimum of 100 mm.
- Fixing insulation to the duct four optional methods of connecting the wire mesh joints:
 - 1. Wire mesh is twisted approximately each 150 mm.
 - 2. Wire mesh is sewn by wire with a minimum thickness of 0,7 mm.
 - 3. Wire mesh is connected with clips, approximately each 150 mm.
 - 4. Wire mesh is stitched by small steel wire loops with a minimum thickness of 0,7 mm, approximately each 150 mm.

Longitudinal joints of wire mesh must be connected using any of the methods above. Connecting transversal joints is optional. If transversal joints are twisted (method 1), the mesh wires can be twisted; never twist the perimeter wire.

Material of the wire mesh and wires: steel with any surface finishing or stainless steel.

As an additional measure, to further secure the installation, the insulation may be attached to the duct by welding pins. Pins must be placed a minimum of 50 mm from joints of the mats.

INSTALLATION PROCEDURE

INSTALLATION OF PENETRATION

Before starting the installation, the openings in the wall/floor must be checked if they are clean and following the design rules given in this document. Working temperature is a minimum of +10 °C.

- **1.** Fill the gap tightly and completely with unfaced PAROC® Stonewool, minimum uncompressed density with 60 kg/m³, reaction to fire class A2-s0,d1 or better. The resulting surface of stone wool filling must be flush with both surfaces of the wall/floor.
- 2. Prime the surface of the stone wool filling and surrounding wall/floor surfaces with clean water.
- **3.** Apply a continuous layer of fire sealant on both sides of the stone wool filler compressed in the gap, thickness 3 to 5 mm; this may extend to adjacent surfaces of wall/floor.
- **4.** Make the fire sealant surface even and smooth with a wet brush or spatula.
- 5. Stabilise the duct by attaching steel L-angles (if not installed already).

Screws for fixing the L-angles to the wall/floor must be made of steel and be of an appropriate type for the wall/floor material. Two screws must be used to attach each L-angle to the wall/floor. Minimum size is 5 mm for aerated concrete, and 3,5 mm for lightweight partitions – screwed to the steel structure of the drywalls. They may include dowels or other type of anchors suitable for fire resistance of the duct.

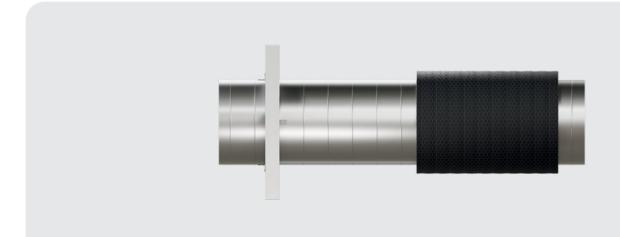
BASIC RULES FOR HANDLING THE INSULATION MATS

- Mats must be handled with care to avoid damage to the insulation or facing.
- Unpack and unfold the mat on a flat surface, remove the plastic foil and shake the mat gently and let it rest for a minimum of 10 minutes, until it regains its original thickness and releases any tension due to packing compression.
- The insulation layer must have a uniform thickness; therefore, avoid too much stress or pinching fingers during product handling and installation.

The insulation material compensates surface irregularities of the duct through its material properties. Therefore cuts for L-angles or flanges are not required. Bends and T-joints can be insulated by cutting segments of the insulation material.

INSTALLATION OF MATS ON THE DUCT

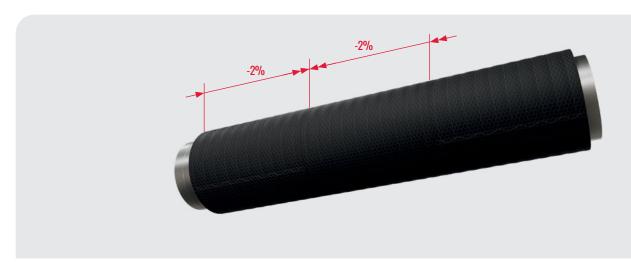
Before installing the insulating layer, the ductwork must be checked if:


- · It fulfils air tightness criteria.
- It is assembled according to design, with proper quality, without visible holes or gaps or mechanical damage.
- · Duct joints are tight and properly fit together.
- · All the sizes and components comply with this guide.
- · Penetration seal is installed in compliance with this guide.

Mat length is calculated as: 3,14 x (steel duct diameter + 2x insulation thickness + addition for mat compression). Addition for mat compression is approximately 20 mm or a minimum 2% of the mat length. If the mat is too short to wrap the duct in a single piece, the correct final length can be made by connecting several pieces of the mat. Minimum size of any single piece of mat in any direction is 200 mm.

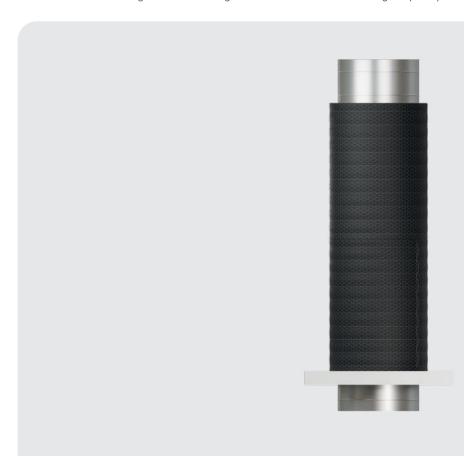
INSTALLATION OF MATS ON HORIZONTAL DUCT

- 1. Cut the mat to the correct length corresponding to the circumference of the duct, leaving a minimum of 100 mm extra facing and mesh for overlapping.
- 2. Wrap the insulation around the duct tightly, so that no gaps occur at the insulation joints.
- **3.** First install the second mat, leaving the space on the duct between the second mat layer and wall -30 mm or a minimum 2% of actual size of the gap, to allow the first mat to be adequately compressed against the wall.



4. Install and stabilize the first mat adjacent to the wall. Unless the fire sealant is still wet, the wall surface must be primed with clean water and another layer of fire sealant applied to create a gluing layer for the insulation. Spread the fire sealant with a wet brush or spatula to make a soft layer approximately 1 mm thick. Immediately after, while the fire sealant is still wet, glue the insulation to the wall.

5. Place the following mats on the duct after one another compressing all the mats to the final installed width 20 mm or a minimum of 2% less than the original mat width.



- **6.** Place the remaining mats on the duct. Longitudinal joints of the adjacent mats are to be offset by a minimum of 100 mm. The last mat must be glued to the wall with the fire sealant following the principles of 4.
- 7. In places where suspension rods penetrate the insulation, make a cut in the insulation, up to where suspension rod will be placed; new joint will be created this way.
- **8.** If there are any visible gaps between mats and walls, apply an appropriate amount of fire sealant therein so that the insulation edge is glued to the wall on all its edge area. Excess fire sealant needs to be removed.

INSTALLATION OF MATS ON VERTICAL DUCT

- 1. Cut the mat to the correct length corresponding to the circumference of the duct, leaving a minimum of 100 mm extra facing and mesh for overlapping.
- 2. Wrap the insulation around the duct tightly, so that no gaps occur at the joints.
- 3. Install the first mat adjacent to the floor/ceiling. Unless the fire sealant is still wet, the floor/ceiling surface must be primed with clean water and another layer of fire sealant applied to create a gluing layer for the insulation. Spread the fire sealant with a wet brush or spatula to make a soft layer approximately 1 mm thick. Immediately after, while the fire sealant is still wet, glue the insulation to the floor/ceiling.
- **4.** Place the remaining mats on the duct after one another compressing all the mats to the final installed width 20 mm or a minimum of 2% less than the original mat width. Longitudinal joints of adjacent mats are to be offset by a minimum of 100 mm. The last top/bottom mat must be glued to the ceiling with PAROC® FireSeal following the principles of 3.

5. If there are any visible gaps between the mats and floor/ceiling, apply an appropriate amount of fire sealant therein so that the insulation edge is glued to the floor/ceiling on all its edge area. Excess fire sealant needs to be removed.

S -

SECURING THE INSULATION LAYER ON THE DUCTWORK

Fixing insulation to the duct – four optional methods of connecting the wire mesh joints:

- 1. Twist the wires in longitudinal joints approximately each 150 mm. Connecting transversal joints is optional. If transversal joints are twisted (method 1), the mesh wires can be twisted; never twist the perimeter wire.
- 2. Sew the longitudinal (optionally also transversal) joints by wire with a minimum thickness of 0,7 mm.
- 3. Connect the longitudinal (optionally also transversal) joints with clips, approximately each 150 mm.
- **4.** Stitch the longitudinal (optionally also transversal) joints by small steel wire loops with a minimum thickness of 0,7 mm, approximately each 150 mm.

GUIDANCE ON CUP HEAD PIN WELDING

To deliver the required fire performance of insulated duct systems, the quality of components and capacitor discharge welding process are crucial. The following parameters are critical to deliver the required weld quality. Good weld quality must be tested prior to attaching insulation on the duct.

Test of the weld quality

- · Weld a minimum of five pins to the same material, steel thickness, and surface as the insulated duct.
- Visually inspect the weld. The pin tip should be properly melted with the steel sheet, without any visible reduction of pin diameter at the weld or radial burn patterns from the weld.
- Bend the pin using a pair of pliers until the pin breaks. The pin must not detach from the steel sheet at the weld, but from slightly above. The weld must be stronger than the pin shaft.
- Repeat the test whenever the weld parameters change (pin type, steel thickness) or whenever there is a doubt about the weld quality based on sensory perceptions during welding.

NOTE: As certain conditions to achieve good weld are affected by the insulation product (points 4 and 5 below), it is recommended to perform this test with the insulation product and remove it before testing the weld quality by bending of pins.

Conditions to achieve good weld quality

- 1. Sharp tip of the pin; any flattening or radius of the tip cannot exceed 0,5 mm.
- 2. Optimal setting of the welding machine
 - Voltage
 - Spring tension in the hand tool
- **3.** Avoiding excess manual force on the pin during welding. There must be only light touch of the pin to the steel duct surface, and when the hand tool is triggered, the pin must only be pushed against the steel duct surface by the spring force in the hand tool.
- 4. Sufficient pin length so that there is minimum 3 mm clearance between the insulation surface and the pin head before welding.
- **5.** Avoiding any stray currents and additional electrical resistance for the current flowing between the pin and the steel duct surface during the welding.
 - Place the negative electrode on the same duct segment where welding is performed.
 - Keep both electrodes clean and make sure there is good contact between the pin and the hand tool and between the negative electrode clip and the duct surface.